Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

$$S$$-wave fully charmed tetraquark resonant states

Wang, G.-J.*; Meng, Q.*; Oka, Makoto

Physical Review D, 106(9), p.096005_1 - 096005_9, 2022/11

 Times Cited Count:13 Percentile:85.19(Astronomy & Astrophysics)

$$S$$-wave resonances in the fully charmed tetraquark system are studied in the quark model. The complex scaling method allows us to get the complex eigen-energies of the tetraquark system above the fall-apart decay thresholds. We found two resonances in each of the $$J^{PC}=0^{++}$$, $$1^{+-}$$ and $$2^{++}$$ sectors, respectively. The obtained resonances are about 100 MeV higher than the recently found resonance, $$X(6900)$$.

Journal Articles

Implications of the $$Z_{cs}$$(3985) and $$Z_{cs}$$(4000) as two different states

Meng, L.*; Wang, B.*; Wang, G.-J.*; Zhu, S.-L.*

Science Bulletin, 66(20), p.2065 - 2071, 2021/10

 Times Cited Count:25 Percentile:91.41(Multidisciplinary Sciences)

Two recently found tetraquark resonances $$Z_{cs}$$(3985) and $$Z_{cs}$$(4000) are studied in a solvable nonrelativistic effective field theory. We include the possible violations of heavy quark spin symmetry and SU(3) flavor symmetry in a comprehensive approach. Our results show that the decay rates can be used to judge whether these resonances can be different states or not.

Journal Articles

Higher fully charmed tetraquarks; Radial excitations and $$P$$-wave states

Wang, G.-J.*; Meng, L.*; Oka, Makoto; Zhu, S.-L.*

Physical Review D, 104(3), p.036016_1 - 036016_15, 2021/08

 Times Cited Count:23 Percentile:89.05(Astronomy & Astrophysics)

Radial excited states and $$P$$-wave excited states of the fully charmed tetraquark spectrum was studied in the quark model. In the standard model settings, we find that several states may correspond to the observed X(6900) region. The possible quantum numbers are $$0^{++}$$, $$2^{++}$$, $$1^{+-}$$, and $$2^{-+}$$ states.

Journal Articles

Mass spectrum and strong decays of tetraquark $$bar c bar s qq$$ states

Wang, G.-J.*; Meng, L.*; Xiao, L.-Y.*; Oka, Makoto; Zhu, S.-L.*

European Physical Journal C, 81(2), p.188_1 - 188_12, 2021/02

 Times Cited Count:32 Percentile:94.72(Physics, Particles & Fields)

The mass spectrum and strong decays of the S-wave $$bar c bar s qq$$ states are studied in the compact tetraquark scenario with the quark model. The model consists of the Coulomb, the linear confinement, and the hyperfine interactions. We calculate their decay amplitudes into the $$D^{-(*)}K^{(*)}$$ channels using the quark interchange method. The mass and decay width of the $$I(J^P)=1(0^+)$$ state are $$M = 2941$$ MeV and $$Gamma_X=26.6$$ MeV, respectively, which indicates that it might be a good candidate for the recently observed $$X^0(2900)$$ state. We also obtain an isospin partner state $$I(J^P)= 0(0^+)$$ with $$M =2649$$ MeV and $$Gamma_{Xto D^- K}= 48.1$$ MeV, respectively. Future experimental search for $$X(2649)$$ will be very helpful.

Oral presentation

Higher fully-charmed tetraquarks; Radial excitations and P-wave states

Wang, G.-J.*

no journal, , 

Radial excited states and P-wave excited states of the fully-charmed tetraquark spectrum was studied in the quark model. In the standard model settings, we find that several states may correspond to the observed X(6900) region. The possible quantum numbers are $$0^{++}$$, $$2^{++}$$, $$1^{+-}$$, and $$2^{-+}$$ states.

Oral presentation

Spectrum of the fully-charmed tetraquark state

Wang, G.-J.*

no journal, , 

Radial excited states and P-wave excited states of the fully-charmed tetraquark spectrum was studied in the quark model. In the standard model settings, we find that several states may correspond to the observed X(6900) region. The possible quantum numbers are $$0^{++}$$, $$2^{++}$$, $$1^{+-}$$, and $$2^{-+}$$ states.

6 (Records 1-6 displayed on this page)
  • 1